Cash
Getting Started
Open VS Code.
Start by clicking inside your terminal window, then execute cd
by itself. You should find that its “prompt” resembles the below.
$
Click inside of that terminal window and then execute
wget https://cdn.cs50.net/2022/fall/psets/1/cash.zip
followed by Enter in order to download a ZIP called cash.zip
in your codespace. Take care not to overlook the space between wget
and the following URL, or any other character for that matter!
Now execute
unzip cash.zip
to create a folder called cash
. You no longer need the ZIP file, so you can execute
rm cash.zip
and respond with “y” followed by Enter at the prompt to remove the ZIP file you downloaded.
Now type
cd cash
followed by Enter to move yourself into (i.e., open) that directory. Your prompt should now resemble the below.
cash/ $
If all was successful, you should execute
ls
and see a file named cash.c
. Executing code cash.c
should open the file where you will type your code for this problem set. If not, retrace your steps and see if you can determine where you went wrong!
Greedy Algorithms
When making change, odds are you want to minimize the number of coins you’re dispensing for each customer, lest you run out (or annoy the customer!). Fortunately, computer science has given cashiers everywhere ways to minimize numbers of coins due: greedy algorithms.
According to the National Institute of Standards and Technology (NIST), a greedy algorithm is one “that always takes the best immediate, or local, solution while finding an answer. Greedy algorithms find the overall, or globally, optimal solution for some optimization problems, but may find less-than-optimal solutions for some instances of other problems.”
What’s all that mean? Well, suppose that a cashier owes a customer some change and in that cashier’s drawer are quarters (25¢), dimes (10¢), nickels (5¢), and pennies (1¢). The problem to be solved is to decide which coins and how many of each to hand to the customer. Think of a “greedy” cashier as one who wants to take the biggest bite out of this problem as possible with each coin they take out of the drawer. For instance, if some customer is owed 41¢, the biggest first (i.e., best immediate, or local) bite that can be taken is 25¢. (That bite is “best” inasmuch as it gets us closer to 0¢ faster than any other coin would.) Note that a bite of this size would whittle what was a 41¢ problem down to a 16¢ problem, since 41 - 25 = 16. That is, the remainder is a similar but smaller problem. Needless to say, another 25¢ bite would be too big (assuming the cashier prefers not to lose money), and so our greedy cashier would move on to a bite of size 10¢, leaving him or her with a 6¢ problem. At that point, greed calls for one 5¢ bite followed by one 1¢ bite, at which point the problem is solved. The customer receives one quarter, one dime, one nickel, and one penny: four coins in total.
It turns out that this greedy approach (i.e., algorithm) is not only locally optimal but also globally so for America’s currency (and also the European Union’s). That is, so long as a cashier has enough of each coin, this largest-to-smallest approach will yield the fewest coins possible. How few? Well, you tell us!
Implementation Details
In cash.c
, we’ve implemented most (but not all!) of a program that prompts the user for the number of cents that a customer is owed and then prints the smallest number of coins with which that change can be made. Indeed, main
is already implemented for you. But notice how main
calls several functions that aren’t yet implemented! One of those functions, get_cents
, takes no arguments (as indicated by void
) and returns an int
. The rest of the functions all take one argument, an int
, and also return an int
. All of them currently return 0
so that the code will compile. But you’ll want to replace every TODO
and return 0;
with your own code. Specifically, complete the implementation of those functions as follows:
- Implement
get_cents
in such a way that the function prompts the user for a number of cents usingget_int
and then returns that number as anint
. If the user inputs a negativeint
, your code should prompt the user again. (But you don’t need to worry about the user inputting, e.g., astring
, asget_int
will take care of that for you.) Odds are you’ll find ado while
loop of help, as inmario.c
! - Implement
calculate_quarters
in such a way that the function calculates (and returns as anint
) how many quarters a customer should be given if they’re owed some number of cents. For instance, ifcents
is25
, thencalculate_quarters
should return1
. Ifcents
is26
or49
(or anything in between, thencalculate_quarters
should also return1
. Ifcents
is50
or74
(or anything in between), thencalculate_quarters
should return2
. And so forth. - Implement
calculate_dimes
in such a way that the function calculates the same for dimes. - Implement
calculate_nickels
in such a way that the function calculates the same for nickels. - Implement
calculate_pennies
in such a way that the function calculates the same for pennies.
Note that, unlike functions that only have side effects, functions that return a value should do so explicitly with return
! Take care not to modify the distribution code itself, only replace the given TODO
s and the subsequent return
value!
Note too that, recalling the idea of abstraction, each of your calculate functions should accept any value of cents
, not just those values that the greedy algorithm might suggest. If cents
is 85, for example, calculate_dimes
should return 8.
Hint
- Recall that there are several sample programs in Week 1’s Source Code that illustrate how functions can return a value.
Your program should behave per the examples below.
$ ./cash
Change owed: 41
4
$ ./cash
Change owed: -41
Change owed: foo
Change owed: 41
4
How to Test Your Code
For this program, try testing your code manually–it’s good practice:
- If you input
-1
, does your program prompts you again? - If you input
0
, does your program output0
? - If you input
1
, does your program output1
(i.e., one penny)? - If you input
4
, does your program output4
(i.e., four pennies)? - If you input
5
, does your program output1
(i.e., one nickel)? - If you input
24
, does your program output6
(i.e., two dimes and four pennies)? - If you input
25
, does your program output1
(i.e., one quarter)? - If you input
26
, does your program output2
(i.e., one quarter and one penny)? - If you input
99
, does your program output9
(i.e., three quarters, two dimes, and four pennies)?
You can also execute the below to evaluate the correctness of your code using check50
. But be sure to compile and test it yourself as well!
check50 cs50/problems/2023/x/cash
Is check50
failing to compile your code?
Be sure you have only modified those parts of the program marked as TODO
. If you modify the main
function or add any global variables, for example, your code may fail to compile. check50
will test your five functions independently, beyond just checking for the final answer.
And execute the below to evaluate the style of your code using style50
.
style50 cash.c
How to Submit
In your terminal, execute the below to submit your work.
submit50 cs50/problems/2023/x/cash