
MVC

Key Terms

• MVC
• model
• view
• controller
• encapsulation

Overview
With anything you build, whether it’s a house or a computer, there’s an underlying
structure that keeps the project organized. For a house, that structure may be a floor
plan, designating the organization of a kitchen and a few bedrooms. Web applications
are no different. One popular structure for web applications is called MVC, or model
view controller. We use this model, or architectural pattern, to organize our code into
parts that all have their own functions.

MVC
MVC is an architectural pattern that splits a web application into 3 logical components: model, view, and con-
troller. The model stores and manages the application’s data; this could consist of a database or some other file
containing data. The view concerns the user-facing presentation of the application; it is application’s output. The
view might include files written in HTML, CSS, and Javascript. The controller is the logic that connects the mod-
el and the view. It is in charge of moving information between the user and the model as well as processing the
given information. The controller might consist of programs written in Python and/or SQL.

For example, imagine an application that takes in a location and outputs nearby restaurants. The view would
have an interface prompting the user to input a location. The location would then be passed to the control-
ler and the controller would use the location to select the desired information from the model. In this case,
the model could be a database containing a list of restaurants and their addresses. The controller would be in
charge performing the necessary calculations to tell the model which restaurants it wants. Once the controller
has retrieved a list of nearby restaurants from the model, the controller can send that information to the view to
present to the user.

This is CS50.© 2018

CS50

Why MVC?
MVC is popularly used in industry because of its encapsulation of different parts of a web application. Although
the model, view, and controller work together, their functions are independent of each other. Therefore, the
model, view, and controller can be developed separately and simultaneously, making the MVC scalable and ex-
tensible. It also allows for the delegation of tasks among a large team of people, leading to a faster development
process. Within these teams, the model, view, and controller can be independently tested. After a web applica-
tion is built, MVC allows updates to be made without needing to update all parts of the application; any one part
can be changed without changing the other, as long as the interactions between them remain the same. This
compartmentalization also enables code reuse between different web applications.

view model

user

controller
input input

processed
input

processed
output

processed
output

output

web application

The view is respon-
sible for enabling
communication be-
tween the user and
the application. May
include HTML, CSS,
and Javascript files.

The controller is the mastermind; it
takes input from the view, process-
es it, uses it to send requests to the
model, takes output from the model,
processes it, and then passes it back
it the view. May include programs
written in Python and/or SQL.

The model stores
data. It responds to
requests from the
controller to return
particular data or
update itself. May
include a database.

