
Insertion Sort

Key Terms

• insertion sort
• array
• pseudocode

Overview
Insertion sort is yet another algorithm to sort arrays, but this time it does not require 
multiple iterations over the array. Like usual, optimizations usually force the program-
mer to sacrifice something else. However these sacrifices are nearly negligible, in the 
case of insertion sort, when the array is small or the array is nearly sorted. Similar to 
selection sort, the array of elements will be split into two parts: a sorted portion and an 
unsorted portion. 

Implementation
In the case of having two elements in the array, the imple-
mentation is relatively simple. Consider the first element to 
be automatically in the sorted portion of the list. Look at 
the next element in the array, and determine where it fits 
in the sorted list. This can be applied to a larger array with 
the following pseudocode:

for each unsorted element, n, in the array
	
	 determine where in the sorted portion of the 		
	 array to insert n
	
	 shift sorted elements rightwards as necessary 	
	 to make room for n

	 insert n into sorted portion of the list

When this is implemented on the example array, the pro-
gram would start at array[1], which is 1, since an array of 
size one (array[0]) is already sorted. 5 would get shifted 
over to the right, and 1 would be moved to array[0]. Next, 
the program looks at 6. 6 is greater than 5 so no elements 
need to be shifted to make room for it. And so on and so 
forth. Eventually with this procedure, the entire array will 
be sorted.

This is CS50.© 2018

Sorted Arrays
There is no guarantee that after any step in the implementation, any elements are in the correct location in the ar-
ray. Even if an element did happen to be in its correct location in the initial array, it is likely that it would be moved 
to a different location within the sorted array before it would be shuffled back into its final location. Also note 
that in insertion sort, all the elements to the right of the newest element in the sorted list have to be shifted over 
one space. So while it may seem like insertion sort involves n steps, we are increasing the amount of times an ele-
ment is being moved because elements are being shifted over to accomodate new elements rather than just be-
ing swapped. This is, however, dependent on the order of the initial array. It is also worth considering that sorting 
algorithms need to address cases in which two elements are equal. When dealing with few unique elements the 
key is just to be consistent. If, in the implementation of insertion sort, there was a line that checked if the current 
element was equal to an element in the sorted array, it should always have the same outcome, whether it is to the 
right or the left of that element is irrelevant.

CS50

61 42 35	

65 42 31	

65 42 31	

Step-by-step process for
insertion sort

52 46 31	

42 65 31	

32 54 61	


