ASCII

Overview

Computers need a way of storing a variety of types of information, including text. However, since computers can only store data as Os and 1s, computers need a way of using those Os and 1s to represent characters in text. ASCII is a standard way of translating characters to and from sequences of binary digits that computers can understand.

Key Terms

- encoding
- ASCII
- ASCII table

ASCII's Limits

ASCII is frequently represented on an ASCII table: which is just a table that shows all possible ASCII characters, and which numbers correspond to them.

The original ASCII table represents all characters using just 7 bits: which means that there are 2^{7}, or 128 , possible characters that can be represented in ASCII. Several extensions to ASCII exist which add an 8th bit, allowing for a total of 256 possible characters to be represented. Since there are only 52 letters, this means that ASCII has space to represent other types of characters: like punctuation, numbers, and some basic symbols (like the $\$$ sign or the \% sign).

However, event with 8-bit ASCII encoding, there are still a lot of characters that can't be represented, because there are more than 256 possible characters. For example, many mathematical symbols and characters in other languages do not fit into the standard ASCII table. As a result, other character encoding standards exist that have far more possible character options: Unicode, for example, is a character encoding standard that allows for more than 1 million possible characters to be represented. The first 128 characters in Unicode are identical to the 128 characters in ASCII, which makes them compatible with one another.

